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Abstract
In this paper, we employ an ab initio density functional theory calculation to investigate the
elastic stability of face-centered cubic Au under hydrostatic deformation. We identify the elastic
stiffness constant Bi jkl as the coefficient in the stress–strain relation for an arbitrary deformed
state, and use it to test the stability condition. We show that this criterion bears the same physics
as that proposed earlier by Frenkel and Orowan and agrees with the Born–Hill criterion. The
results from those two approaches agree well with each other. We show that the stability limit,
or instability, of the perfect Au crystal under hydrostatic expansion is not associated with the
bulk stiffness modulus as predicted in the previous work; rather it is caused by a shear
instability associated with the vanishing rhombohedral shear stiffness modulus. The deviation
of the deformation mode from the primary hydrostatic loading path signals a bifurcation or
symmetry breaking in the ideal crystal. The corresponding ideal hydrostatic strength for Au is
19.2 GPa at the Lagrangian expansion strain of ∼0.06. In the case of compression, Au remains
stable over the entire pressure range in our calculation.

1. Introduction

The strength of crystalline materials is determined in general
by the nucleation and motion of dislocations or microcracks. If
there are no such defects, the materials would fail at the limit of
so-called stability, including elastic and phonon stability. The
stress at which this is achieved is called the ideal strength. It is
of great interest to investigate the elastic behavior of a perfect
crystal under loading because the path leading toward the
instability is related to not only the ideal strength but also the
atomic mechanisms of the defect formation. Such information
is also very useful in the analysis of the structural response
of solids, ranging from polymorphism to amorphization to
fracture. Moreover, the ideal strength is connected to the
strength and defect formation in nanostructured materials
currently being developed, as shown in recent nanoindentation
experiments where the onset of yielding on the nanoscale
is suggested to be related to homogeneous nucleation of
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dislocations in the small volume under the nanoindenter where
stresses approach the ideal strength [1].

The elastic stability limit is formulated traditionally
following Born’s original idea [2, 3] that a crystal should
remain stable when the change of the elastic energy with
respect to the spontaneous strain exhibits convexity; otherwise,
instability would occur consequentially. The condition of
convexity leads to the stability criteria in the form of a set of
relations involving elastic constants appropriate to the crystal
symmetry. Born’s theory is, however, formulated for systems
without an external load. For systems under an external load,
it was shown [4–14] that the elastic stiffness coefficients Bi jkl

(equation (6) below) rather than elastic constants Ci jkl should
be used in formulating the stability criteria. The onset modes at
the instability derived from the stability criteria were tested for
many crystalline systems using various approaches employing
empirical or semi-empirical inter-atomic potentials such as the
Lennard-Jones potential [9], the Morse potential [14] or EAM
potentials [11]. It is known that these inter-atomic interactions
are obtained by fitting the parameters predominantly with the
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equilibrium properties of the material studied (i.e., under zero
or infinitesimal deformation). It is, therefore, doubtful that one
should apply those potentials obtained this way to simulate the
materials under finite loading and still expect to obtain reliable
results. Ab initio electronic structure calculations, on the other
hand, have been performed for variously strained structures
and are shown to give the ideal strength of materials without
resorting to doubtful extrapolations. Given recent advances
in quantum theoretical methods and computers, it is possible
to calculate the elastic limits with considerable accuracy,
including both the theoretical stress and the detailed nature of
the atomic rearrangements as the elastic limit is approached.
For instance, Senoo et al discussed the elastic deformation due
to [100] loading of Al using the pseudopotential method [15].
Esposito et al dealt with the tensile strength of fcc Cu under
uniaxial deformation on the basis of the ab initio potential,
augmented-spherical-wave (ASW), and KKR methods [16].
Friak et al did extensive investigation of the ideal strength of
bcc iron under hydrostatic pressure, and due to [001], [111]
uniaxial tension [17]. Li and Wang studied the ideal tensile
strength of Al [18]. Cerny et al worked on the tensile strength
of Cu [19]. Cerny et al also tested the elastic stability of some
magnetic crystals under hydrostatic pressure [20].

The stability criterion based on the elastic stiffness
constants [11–13] certainly provides a convenient and powerful
recipe for measuring the stability limit. As was done in these
previous works, one first calculates the elastic constants and
then constructs the elastic stiffness coefficients as a function
of the stress applied to a system, which is usually under
some specific load such as hydrostatic, uniaxial tensile or
compressive, or shear strain. One then obtains the stability
limit at the strain where a principal minor of the elastic stiffness
constant matrix first becomes non-positive, or det |Bi jkl | =
0. While along some simple loading paths such as uniaxial
tension and compression the stability limit is found to relate to
some shear strain modes [18, 19], under hydrostatic loading
it is observed that the stability is dominated by the bulk
stiffness coefficient that corresponds to void formation under
expansion [11]. The possibility of bifurcations from the
primary loading path or mode before the stability limit is
approached was seldom observed in the case of hydrostatic
loading. As we show below, the stability limit of Au under
a hydrostatic load is actually caused by shear not by volume
instability as shown in the earlier work [11]. As considered in
the earlier studies, noticeably by Born [2, 3] and Hill [4–8],
some perturbations, fluctuations, as well as sample loading
conditions would make the deformation path stray from the
primary loading path, causing the measured stability limit to
be different from that intended originally. As we show here,
this phenomenon, which is called ‘stability bifurcation’, plays
an important role in determining the global stability of a crystal
lattice.

In this paper, we present a direct investigation, using
density functional theory (DFT), of the elasticity, the stress–
strain relation, the stability, and the ideal strength of fcc metal
Au under hydrostatic stress. Au is special in its structural
stability, known experimentally to have no polymorphism
under hydrostatic compression, so its original symmetry is

preserved on the primary loading path under hydrostatic stress
before the instability limit, yet to be identified. Thus it provides
a simple test case for a stability study. Therefore, the possible
bifurcation along paths different from the primary loading path
can be addressed relatively clearly. The additional motivation
is drawn from the earlier studies made by Wang et al on
Au [11]; they performed molecular dynamics (MD) simulation
using classical EAM potentials. As shown below, our results
are different from theirs in that the stability limit of Au under
hydrostatic expansion is dominated by shear instability, not by
volumetric or bulk modulus instability. This unusual finding is
a direct manifestation of the stability bifurcation.

This paper is organized as follows. The stability criterion
of a crystal solid is presented briefly in section 2. In
this section, we review the formulation of the stress, elastic
stiffness coefficients, elastic stiffness moduli, and stability
criteria. In particular, we shall give a new interpretation of
the stability criterion based on the elastic stiffness coefficients
from the stress–strain relation in any deformed state. In
section 3, we introduce our calculation models and methods
and the ab initio DFT method. In section 4, we show
our results. In section 5, we discuss our results and make
comparisons with some related previous work. Finally, we will
draw conclusions from this work.

2. The stability criterion of crystal solids

For a solid body subject to an external loading, the
configuration of a material point in the system after elastic
deformation is represented as Y = Y (X), where X is the
initial configuration in the equilibrium state. The deformation
gradient is defined by

Ji j = ∂Yi

∂ X j
, (1)

where i, j = 1, 2, 3 are the indices of the Cartesian
coordinates. Then the Lagrangian strain tensor is defined as

η = 1
2 (J T J − I ), (2)

where I is the unit matrix. The internal energy is related to the
Lagrangian strain through Taylor series expansion in terms of
the strain tensor [21],

U(X, ηi j) = U(X, 0) + V
∑

i j

σi jηi j

+ (1/2!)V
∑

i jkl

Ci jklηi jηkl + · · · , (3)

where
σi j = V −1(∂U/∂ηi j)η=0 (4)

Ci jkl = V −1(∂2U/∂ηi j∂ηkl)η=0, (5)

and V is the volume in the configuration X . If the system
is under load, the stability criterion depends on the elastic
stiffness coefficients, instead of the elastic constants as defined
in equation (5) in Born’s theoretical framework. The definition
of the elastic stiffness coefficients is as follows:

Bi jkl = Ci jkl +(1/2)(δikτ jl +δ jkτil +δilτ jk +δ jlτik −2δklτi j),

(6)
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where τi j is the external stress, which is equal to the internal
stress σi j (equation (4)) if the system remains in mechanical
equilibrium. This derivation of Bi jkl is from the premise
proposed by Hill and Milstein [4–8] that a solid can only be
in a stable state when the change of the internal energy δU
is larger than the external work δW done to the system, or
δU − δW > 0.

Here we give another, and physically more transparent,
definition of the elastic stiffness coefficients Bi jkl and the new
interpretation of the stability criterion, which is based on the
stress–strain relations in any deformed state. If a material in
configuration X under stress σi j(X) is stable, then after a given
small perturbation, i.e. with a small strain ηY

X , the system will
move to a new state Y with a corresponding stress σi j(Y ). The
two stresses are related by a linear proportional coefficient of
stress versus strain between the two states (X and Y ) of the
stressed system as shown by Wallace [21],

σi j (Y ) = σi j (X) + Bi jkl(η
Y
X )kl + O[(ηY

X )2]. (7a)

If the material in the state X is stable, then the increment of the
stress δσi j = σi j (Y ) − σi j(X) must remain positive to the first
order in the perturbative strain ηY

X , or

δσi j = σi j(Y ) − σi j(X) = Bi jkl(η
Y
X )kl > 0, (7b)

for any small perturbative strain (we can assume ηY
X > 0

without losing generality). Otherwise, the system becomes
unstable. The stability criterion can be cast in terms of the
principal minor of the stiffness coefficient,

det |Bi jkl| > 0. (7c)

This interpretation of the stability criterion is in fact very
much in the same spirit as that of the original criterion for
the ideal strength of materials proposed by Frenkel [22] and
Orowan [23]. We should mention in passing that interpretation
of the stability criterion in this way has not been contended
seriously despite its simplicity in physical meaning.

As is obvious from the definition, Bi jkl does not
necessarily retain the symmetry relations of the original crystal
since the deformed state Y can be arbitrarily far away from the
initial non-deformed state [21]. Given that Bi jkl is in general
asymmetric while i j ↔ kl, the symmetrized coefficient should
be used,

B̄ = (1/2)(BT + B). (8)

The system becomes unstable when det |B̄| = 0 for the first
time under the applied load. In other words, as B̄ is a function
of the deformation strain, the instability condition will lead to
a set of relations among the B̄i j s at the critical applied strain
along the primary loading path.

For a cubic crystal subject to hydrostatic pressure P ,

τi j = −Pδi j . (9)

We follow the convention that the inward pressure is positive
while outward stress is negative (i.e., P < 0 for tension). From

equations (6) and (9), the elements of the stiffness coefficients
are

B11 = B22 = B33 = C11 − P,

B12 = B23 = B13 = C12 + P,

B44 = B55 = B66 = C44 − P.

(10)

Here we simplify the subscript in the tensor notion by using
the Voigt notation (11 → 1, 22 → 2, 33 → 3, 23 → 4,
31 → 5, and 12 → 6). For this special case, the stiffness
coefficients and the elastic constants have the same type of
crystal symmetry. And Bi j possesses i ↔ j symmetry, so
B̄ = B . Let det |B| � 0; there are three independent stability
conditions,

B11 + 2B12 � 0, (11)

B11 − B12 � 0, (12)

B44 � 0. (13)

Or
C11 + 2C12 + P � 0, (14)

C11 − C12 − 2P � 0, (15)

C44 − P � 0, (16)

using the elastic constants Ci j for the loaded state. The
bulk modulus BT , tetragonal shear modulus G ′, and the
rhombohedral shear modulus G are defined as follows:

BT = (C11 + 2C12)/3, (17)

G ′ = (C11 − C12)/2, (18)

G = 4C44. (19)

These quantities are extended to the system under finite
hydrostatic load, so we have the corresponding bulk and shear
stiffness moduli,

BT (τ ) = (B11 + 2B12)/3 = (C11 + 2C12 + P)/3, (20)

G ′(τ ) = (B11 − B12)/2 = (C11 − C12 − 2P)/2, (21)

G(τ ) = 4B44 = 4(C44 − P). (22)

In contrast to the conventional or Born stability criteria only
valid in the load-free case, which requires that (17)–(19) be
positive, the stability criteria in the system under load require
instead (20)–(22) to be positive.

3. Calculation details

3.1. Calculation methods

To simulate hydrostatic deformation, we first calculate the
properties (total energy and equilibrium lattice parameter) of
a single crystal of Au in the ground state. We performed the ab
initio DFT calculations using the Vienna ab initio simulation
package (VASP) [24] developed by the Hafner Research Group
at the University of Vienna. VASP uses pseudopotentials
or the projector-augmented wave (PAW) method and a plane
wave basis set. To obtain a lattice parameter that is in
better agreement with the experimental value, we used the

3
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Figure 1. The calculated change of elastic energy versus applied
hydrostatic deformation strain. We use a/a0 as the independent
variable.

exchange–correlation energy evaluated with the local density
approximation (LDA). Ultrasoft pseudopotentials [25] were
always employed to describe the electron–ion interactions. We
used an 18×18×18 k-point mesh in our calculations following
the Monkhorst–Pack scheme, which as our experience shows
is sufficient for reaching the desired convergence of the total
energy and elastic constants. We took the cutoff energy set
at EAu

cut−off = 292 eV, which is sufficiently large for the total
energy to converge to the stable equilibrium state. For Au,
the ground state has a face-centered cubic structure with the
lattice parameter a0 = 4.07 Å, which is very close to the
experimental measurement 4.08 Å [26] at room temperature.
We thus use 4.07 Å as the lattice parameter in our supercell,
which is a face-centered cubic cell containing four atoms, to
perform the following simulation work for deformation. The
benefit of using such a supercell is that we can easily apply
specific strains on the supercell and read the values of the six
components of the stress tensor directly from VASP output
files.

In the next step, we applied hydrostatic deformation to the
crystal supercell via a strain, η11 = η22 = η33 = ξ , ηi j = 0
for i �= j . We changed the value of ξ from −0.15 to +0.15
with a finite step size �ξ = 0.0025. This operation amounts
to changing the lattice parameter homogeneously. Let a be the
lattice constant of the deformed crystal, and obviously a/a0 =√

1 + 2ξ from equations (1) and (2). Applying this type of
deformation is equivalent to the application of a hydrostatic
stress. We then obtain the internal energy U as a function of
the applied strain, or U = U(a/a0), with the first-principles
calculation, as shown in figure 1.

3.2. Elastic energy and stress–strain relations

The elastic energy expanded at each arbitrary deformed
configuration when the system changes from state X to state

Y is

U(X, η̄) = U(X, 0) + V
∑

i j

σi jηi j

+
(

1

2!
)

V
∑

i jkl

Ci jkl η̄i j η̄kl + · · · , (23)

where V = a′3, η̄ is a new Lagrangian strain tensor in the
deformed configuration X with lattice constant a′. We can
simplify the subscript in the tensors by using the Voigt notation.
Equation (23) can then be written as

V −1[U(X, η̄) − U(X, 0)] =
∑

i=1,...,6

σi η̄i

+ 1

2!
∑

i, j=1,...,6

Ci j η̄i η̄ j + · · · . (24)

Considering our face-centered cubic supercell under
hydrostatic deformation, given by η̄1 = η̄2 = η̄3 = ξ̄ ,
η̄4 = η̄5 = η̄6 = 0, plus σ1 = σ2 = σ3 = σ , we have

V −1[U(X, η̄) − U(X, 0)] = 3σ ξ̄ + ( 3
2 C11 + 3C12)ξ̄

2 + · · · .
(25)

And thus,

σ = 1

3V

(
∂U

∂ξ̄

)

ξ̄=0

, (26)

BT = C11 + 2C12

3
= 1

9V

(
∂2U

∂ξ̄ 2

)

ξ̄=0

. (27)

So at each deformed configuration with lattice constant a′,
we select a few datum points from the U–a/a0 curve near
to a′/a0 and calculate the strain value ξ̄ for each point using
X as the reference configuration. Since the elastic energy
can be expressed as a polynomial of the strain parameter ξ̄

as shown in equations (24) and (25), when we plot the U–ξ̄

curve, we may obtain the internal stress (equation (26)) and
elastic bulk modulus (equation (27)) through the polynomial
fitting mentioned above.

Figure 2 shows the stress calculated in this way. We
found that it does agree very well with the Hellmann–Feynman
stress calculated by using VASP. As the ideal strength is
conventionally defined as the maximum of the stress along
the designated deformation path, from figure 2 it appears that
the ideal strength for Au is σmax = −P = 23.45 GPa at
the corresponding hydrostatic strain a/a0 = 1.12. However,
we will show below that this is not the true value for the
ideal hydrostatic strength, because the stability limit has
already been approached before this point via a shear stability
bifurcation.

3.3. Elastic constants and elastic stiffness coefficients

As mentioned earlier, there are two ways to calculate elastic
stiffness coefficients under load. One is using equation (6),
to treat elastic stiffness coefficients as functions of the elastic
constants and the applied stress tensor. From equation (27)
via fitting of the internal energy, we have the value of (C11 +
2C12)/2 that leads to BT (τ ) = (C11 + 2C12 + P)/3. So
we may test the stability via the so-called volumetric or bulk
modulus stability condition (11) or (14), which was also called

4
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Figure 2. The Hellmann–Feynman stress calculated by using VASP
and the stress derived from the energy–strain relation. The maximum
stress σmax = 23.45 GPa occurs at a/a0 = 1.12.

the mechanical spinodal stability [11]. The other way is using
equation (7b), that treats elastic stiffness coefficients as the
linear expansion coefficients of the δσ–ξ̄ curve from which one
can also get the value of BT (τ ).

Starting from equations (7), we consider our face-centered
cubic supercell under hydrostatic deformation, (η̄1 = η̄2 =
η̄3 = ξ̄ , η̄4 = η̄5 = η̄6 = 0, plus σ1 = σ2 = σ3 = σ). We then
have

δσ = (B11 + 2B12)ξ̄ = 3BT (τ )ξ̄ . (28)

So for each deformed configuration with a′ as the lattice
constant, we take a few points from the σ–a/a0 curve (figure 2)
close to a′/a0, calculate the strain value ξ̄ for each point using
X as the reference configuration, and then make a linear fitting
to equation (28), so we obtain the value of BT (τ ) at that
reference configuration.

As shown in figure 3, this approach arising from the orig-
inal definition of elastic stiffness coefficients (equations (7))
does give results agreeing with those from the convexity argu-
ment of Born and Milstein et al. Incidentally, this agreement in
our computation provides strong support for the capability and
accuracy of the ab initio DFT simulation.

3.4. Shear instability and bifurcation away from the
hydrostatic strain path

As mentioned in section 1, the stability condition can be
violated not through the primary loading path which one
intends to examine. For example, in experiments as well as
in theory, very often one may find other stability conditions
violated before the primary stability condition is, leading to
stability bifurcation. Such complications, although abundant
in nature and in theoretical scenarios, have not received much
attention.

For cubic crystals, two other stability paths are related
to shear. To test the two shear stability conditions (12)–
(13), we need to give a small perturbative shear strain δη

to each hydrostatically deformed configuration at the given

Figure 3. The bulk stiffness modulus is calculated using two
approaches. One (smooth line) uses the energy–strain relation, and
the other (filled circles) uses the stress–strain relation. The dashed
line represents the bulk modulus defined in equation (17).

hydrostatic strain ξ . The strain δη allows the system to
deviate from the main hydrostatic deformation path. Then
we check the elastic energy or stress change as a function
of δη. With a set of unit lattice vectors (i.e., [a, 0, 0],
[0, a, 0], [0, 0, a] in the hydrostatically deformed sample), the
perturbative deformation can be described using an appropriate
Jacobian matrix J ′ as

r ′ = J ′ · r, (29)

where r is the position vector corresponding to the current state
along the hydrostatic deformation path, and vector r ′ describes
the perturbed state with the shear strain δη.

Under this combined strain state, once again there are two
ways to test the stability conditions. The first one is to use the
calculated U–δη curves to obtain the elastic constants through
polynomial fitting, which combining with the pressure at this
state leads to the (shear) elastic stiffness coefficients. Then we
can test whether equation (15) or (16) is violated or not. The
second way is to use equations (7). With the given small strain
δη, we can obtain the elastic stiffness moduli in the system
under load as the linear expansion coefficients from the δσ–δη

curve, and then check the stability with equations (12) and (13).
The stability condition as presented in equation (12)

involves the tetragonal shear modulus, G ′ = (C11−C12)/2. Its
violation corresponds to a shear instability; once it occurs we
expect the bifurcation from the hydrostatic deformation path.
In order to test this stability condition, we use the following
Jacobian matrix (and the corresponding strain matrix for the
tetragonal shear) at each point of a′/a0 along our hydrostatic
deformation path:

J =
⎛

⎝

√
1 + 2ξ̄ 0 0

0
√

1 − 2ξ̄ 0
0 0 1

⎞

⎠ ,

δη =
(

ξ̄ 0 0
0 −ξ̄ 0
0 0 0

)
,

5
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Table 1. Zero-pressure elastic stiffness coefficients Bij (in GPa), their pressure derivatives and elastic modulus BT , G ′ and G (in GPa).

B11 ∂ B11/∂ P B12 ∂ B12/∂ P B44 ∂ B44/∂ P BT G ′ G Reference

202.1 6.34 174.2 5.34 37.9 1.74 183.5 14.0 151.6 This work
201.3 5.97 176.1 5.38 36.9 1.43 184.5 12.6 147.6 [27]
192.2 7.01 162.8 6.14 42.0 1.79 172.6 14.7 168.0 [28] (RT)
192.9 5.71 163.8 4.95 41.5 1.52 167.2 14.6 166.0 [29] (RT)
200.4 6.49 169.5 5.66 44.5 1.79 179.8 15.5 178.0 [30] (79 K)

where ξ̄ is the magnitude of the shear strain. With such
increments of the tetragonal deformation, the energy of the
system changes according to the relation (24),

δU = V (C11 − C12)ξ̄
2 + · · · , (30)

where V = a′3 is the current volume. The tetragonal shear
modulus G ′ = (C11 − C12)/2 can be expressed as

G ′ = 1

4V

∂2U

∂ξ̄ 2
. (31)

And then,

G ′(τ ) = G ′ − P. (32)

Or if we use a second approach employing the stress–strain
relation with equations (7), we have

δσ1 = (B11 − B12)ξ̄ = 2G ′(τ )ξ̄ , (33)

and then we have

G ′(τ ) = 1

2

∂σ1

∂ξ̄
. (34)

The second shear stability corresponding to the condition
in equation (13) is the rhombohedral shear instability, G(τ ) =
4(C44− P). To explore the bifurcation along the rhombohedral
shear strain, we used the following perturbative shear strain
matrix:

δη =
( 0 0 0

0 0 ξ̄

0 ξ̄ 0

)
.

The corresponding elastic energy change now becomes

δU = 2V σ4ξ̄ + 2V C44ξ̄
2 + · · · , (35)

and the elastic constants are

C44 = 1

4V

∂2U

∂ξ̄ 2
, (36)

G(τ ) = 1

V

∂2U

∂ξ̄ 2
− 4P. (37)

Alternatively, from the stress–strain relation (equations (7)),
we have

δσ4 = 2B44ξ̄ , (38)

G(τ ) = 2(∂σ4/∂ξ̄). (39)

Figure 4. The tetragonal shear stiffness modulus calculated using
two approaches. One (smooth line) is using the energy–strain
relation, and the other (filled circles) is using the stress–strain
relation. The dashed line represents the modulus defined in
equation (18).

4. Results

Table 1 summarizes the elastic stiffness coefficients B11, B12,
B44 and their derivatives with respect to pressure calculated
in this work using DFT. The zero-pressure values of the Bi js
obtained agree well with the previous theoretical calculations
using the ab initio full-potential linear muffin-tin orbital (FP-
LMTO) method [27]. Our results show better agreement with
low-temperature experimental data than the room temperature
data [28–30]. Under compression, Au exhibits stability over
the entire range of applied strain (strain up to a/a0 = 0.83 and
pressure up to 412 GPa). Under expansion, Au exhibits much
complex stability behavior which is presented below.

The bulk stiffness modulus BT (τ ) obtained from the two
different approaches, one from the U–ξ̄ relation and the other
from the σ–ξ̄ relation, are nearly identical, and so are the
shear stiffness moduli G ′(τ ) and G(τ ) as shown in figures 3–
5. Figure 3 shows that the hydrostatic or volume strain stability
condition (equation (11)) is violated at the point a/a0 = 1.12
where the bulk modulus vanishes. BT and BT (τ ) reach zero
at almost the same strain, a/a0 = 1.12. On the other hand,
the tetragonal shear stability condition (equation (12)) is not
violated until a/a0 = 1.09 as shown in figure 4. Looking
at the rhombohedral shear stability condition (equation (13)),
we see that the rhombohedral shear stiffness modulus G(τ )

disappears at a much smaller value of a/a0 = 1.06 as shown
in figure 5. So our ab initio calculations gave the following

6
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Figure 5. The rhombohedral shear stiffness modulus calculated
using two approaches. One (smooth line) is using the energy–strain
relation, and the other (filled circles) is using the stress–strain
relation. The dashed line represents the modulus defined in
equation (19).

sequence in terms of applied hydrostatic strains where the
corresponding instability conditions are violated for Au under
hydrostatic expansion: the rhombohedral shear stability limit
is reached at a/a0 = 1.06, the tetragonal shear stability
limit at a/a0 = 1.09, and the hydrostatic stability limit at
a/a0 = 1.12. According to the stability criterion, the system
should become unstable at the smallest value of the applied
strain that corresponds to the first violation of the stability
conditions. For Au subject to hydrostatic expansion, therefore,
we show that it is at a/a0 = 1.06, and the instability is
dominated by rhombohedral shear. The corresponding ideal
strength of Au under hydrostatic expansion is found to be
19.2 GPa.

As mentioned in section 1, the instability for systems like
Au was expected to occur along the primary loading path of
hydrostatic expansion [11]. However, our results show that the
occurrence of the shear instability at a/a0 = 1.06 precedes
and intervenes in the volumetric instability that occurs at
a/a0 = 1.12. This preemptive effect clearly represents a
stability bifurcation deviating from the primary loading path.
To illustrate this point further, we plot the shear stress–strain
relation in figure 6 for the system subject to the rhombohedral
shear strain η4 at the given hydrostatic expansion. The stress–
strain relation shows that, when a/a0 < 1.06, the slope of
this σ4–η4/2 curve at the initial point is positive, i.e. B44 > 0;
when a/a0 � 1.06, the slope becomes negative, i.e. B44 � 0.
As shown in figure 2, the slope of the volumetric stress–
strain curve along the hydrostatic strain direction, or the bulk
stiffness constant BT , is still positive at a/a0 = 1.06, and only
becomes zero at a/a0 = 1.12. Note that the negative stress–
strain relation at small strain, which corresponds to an unstable
state, is predicted from the calculation when the finite strain is
imposed on the system. In reality, of course, such a scenario
may not be seen, as a possible change of structure could occur
precipitously.

Figure 6. At each configuration with hydrostatic expansion, we give
a perturbation of the rhombohedral shear strain η4 and calculate the
stress–strain relation for the system. The slope of the curve involves
the rhombohedral shear stiffness modulus B44 which becomes
negative at a/a0 ∼ 1.06.

5. Discussion

The stability limits for Au were investigated earlier by Wang
et al using classical molecular dynamics simulation [11].
In their work, the bulk stiffness modulus disappears first
with volume expansion at around a/a0 = 1.06, which was
followed by void formation. The tetragonal shear stiffness
modulus remains larger than zero until a/a0 = 1.09 and
the rhombohedral shear stiffness modulus is nonzero until
a/a0 = 1.08. The results led them to conclude that the
instability is caused by volumetric instability, or along the
primary loading path. The difference between the MD and the
current DFT calculation could originate from several causes.
Firstly, since a semi-empirical inter-atomic potential was used
in the MD simulation, certain differences should be expected as
compared with ab initio calculations, especially when dealing
with large deformation strains (6–12%) which may not be
adequately considered when fitting the potential. Secondly,
since the MD work was performed at elevated temperatures
(200–1200 K), one would expect the elastic constants as well
as the elastic stiffness constants to be different. Consequently,
the softening of these constants at high temperature should
lead to smaller critical strains corresponding to the instability
points (equations (12) and (13)) than those at zero temperature
as seen in our DFT calculation. However, as it is known that
the bulk modulus decrease versus temperature rise is in general
much slower than the shear moduli for most metals including
Au [30], one would still expect to see shear instability intervene
before the volumetric instability, as the shear moduli are
already much smaller than the bulk modulus in the first place.
Thirdly, the stability limits in the MD results were obtained
from extrapolations from the datum points away from the
critical points, as it is known that the increasing thermal
fluctuation makes the MD simulation less reliable close to
those points [31]. In contrast, in the DFT calculation, we
can push the calculation very close to and even beyond the
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instability points. Finally, it is worth noting that the small
sample size used in the DFT calculation may limit the void
formation which was identified as the hallmark of instability
in the MD work. But this limitation is irrelevant in the elastic
stability modeling since we are only focusing on approaching
the stability limit from one side of the phase, not on how the
new phase (i.e. void) forms.

Besides these technical reasons, we believe that some of
these differences are rooted in the fundamental interpretation
of structure or lattice stability. As pioneered by Born, the
elastic instability of a lattice is governed by the vanishing of
the convexity of the elastic energy as a function of varying
strain. The first application of this theory was to melting of
crystals [2, 3] where vanishing of the shear modulus at the
onset of liquid phase formation was thought to be a direct
indication of the elastic instability. Under applied stress,
Born’s convexity argument should still hold but with a few
modifications given by Hill and Milstein [4, 5]. As argued
by Born and later Hill, the presence of many fluctuations and
secondary processes accompanying the primary deformation
strain, including sample loading conditions and rotations,
could lead to instabilities different from that expected from
the primary deformation path. In the hydrostatic expansion
of Au, as we clearly demonstrated, it is the shear instability
that precedes the volume or bulk instability. This bifurcation
process, as we identified here, must be treated carefully
when identifying the instability points and subsequently the
formation of new structures or defects.

Moreover, we should note that the bifurcation observed
along the rhombohedral shear direction simply tells us that
the atoms in the system at the instability point are going to
be engaged in displacement along the rhombohedral shear
directions, thus breaking the original crystal symmetry. For
the same reason, the atomic displacement is not necessarily
correlated, but rather random. This leads to local symmetry
breaking that precedes the local volume expansion, eventually
resulting in void formation. In other words, the so-called
volumetric instability with void formation may be initiated
or nucleated by the shear deformation. In order to test this
mechanism directly, one may need to use a system with
minimum dimension larger than the critical nucleation size of
the void.

The calculations that we performed focus mostly on the
long-wavelength phonon limit and zero temperature. It is
possible that, before violating the rhombohedral shear stability
condition, some soft phonon modes or other instabilities may
appear in the hydrostatically deformed crystal. Actually
recent studies on elastic [18] and phonon [32] instabilities of
aluminum support the suggestion that this may happen in fcc
metals. On a more fundamental level the elastic stability of a
crystal needs to be investigated in terms of electronic structure.
Such a scenario for Au will be explored in the future.

6. Conclusion

In this work, we first identified the elastic stiffness constant
as the coefficient of the stress–strain relation in an arbitrary
deformed state. And then we used it to explain the stability

criterion. This type of interpretation is what Frenkel and
Orowan originally proposed for judging the stability limit
for solids. Using an ab initio calculation, we explored the
elastic stability in terms of the relations between the internal
energy, stress, and strains in Au subject to hydrostatic stress
(tension and compression). More importantly, we introduced
perturbations along non-primary loading directions. We show
from the results that the stability limit of Au under a hydrostatic
load is governed by the rhombohedral shear perturbation-
induced instability, not by volumetric instability which occurs
at a delayed critical volume strain. The preemptive shear
instability represents a bifurcation of the crystal instability
away from the primary loading path, as originally considered
by Born and Hill.
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